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We consider the continuous-time random walk of a particle in a two-dimensional self-affine quenched
random potential of Hurst exponent H�0. The corresponding master equation is studied via the strong disor-
der renormalization procedure introduced in Monthus and Garel �J. Phys. A: Math. Theor. 41, 255002 �2008��.
We present numerical results on the statistics of the equilibrium time teq over the disordered samples of a given
size L�L for 10�L�80. We find an “infinite disorder fixed point,” where the equilibrium barrier �eq

� ln teq scales as �eq=LHu where u is a random variable of order O�1�. This corresponds to a logarithmically
slow diffusion �r��t�−r��0����ln t�1/H for the position r��t� of the particle.
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I. INTRODUCTION

Random walks and diffusion processes have been the sub-
ject of constant interest in mathematics and in physics during
the last century, for two main reasons �i� they play a central
role in probability theory and present a large number of very
nice mathematical properties, and �ii� they naturally appear
in a great variety of situations in physics and in biology. It is
thus important to understand the effects of quenched disorder
on random walks: are the usual properties of random walks
stable with respect to the presence of some disorder or inho-
mogeneity? If not, what are the properties induced by disor-
der? Among the various types of random walks in random
media that have been considered in the past �see the reviews
�1–3� and references therein�, we wish to focus here on the
case of random walks in a two-dimensional self-affine ran-
dom potential U�r��. In a continuous framework, this model
can be defined via the Langevin equation for the position r� of
the particle

dr�

dt
= − �� U�r�� + �� �t� , �1�

where �� �t� is a white noise

��i�t�� j�t��	 = 2T��t − t���i,j �2�

that would generate a Brownian diffusion in the absence of
the random potential U, and where the quenched random
potential U�r�� is self-affine with some Hurst exponent H

�U�r�� − U�r����2 

�r�−r���→�

�r� − r���2H. �3�

The case of dimension d=1 and Hurst exponent, H=1 /2
corresponds to the random-force Sinai model where the loga-
rithmically slow behavior �r�t�−r�0����ln t�2 has been ob-
tained via various exact methods �see, for instance, the re-
view �3� and references therein�. Since this logarithmic
behavior replaces the usual power-law behavior x��t of the
pure Brownian motion, the effect of disorder is extremely
strong. In higher dimension d�1, the model is not exactly
solvable, but from scaling arguments on barriers, one still
expects the analogous logarithmic scaling �3,4�

�r��t� − r��0�� � �ln t�1/H. �4�

However, this behavior has not been much tested, except in
the preliminary unpublished numerical results of Pettini
shown on Fig. 4.9 of the review �3�. The aim of this paper is
to study a continuous-time lattice version of this model in
dimension d=2, via the strong disorder renormalization pro-
cedure introduced in �5� that can be applied to any master
equation in arbitrary dimension.

The paper is organized as follows. In Sec. II, we recall the
Weierstrass-Mandelbrot function method to generate numeri-
cally two-dimensional self-affine random potentials. In Sec.
III, we explain how to use for the present case the strong
disorder renormalization method introduced in �5�. In Sec.
IV, we present our numerical results concerning the statistics
of the equilibrium time teq over the disordered samples of a
given size L�L. Our conclusions are summarized in Sec. V.

II. METHOD FOR GENERATING A TWO-DIMENSIONAL
SELF-AFFINE RANDOM POTENTIAL

Among the various methods that have been proposed in
the literature to generate random functions of a given Hurst
exponent �see the reviews �6� and a comparative study of
their performances in �7��, we have found numerically that
the method giving the best results for the correlation of Eq.
�3� is the so-called Weierstrass-Mandelbrot function method,
that we recall in this section.

A. Reminder on the Weierstrass-Mandelbrot function in
dimension d=1

In dimension d=1, the Weierstrass-Mandelbrot function is
defined by �8,9�

U�x� = �
n=nmin

nmax cos�2	
n� − cos�2	�nx + 2	
n�
�nH , �5�

where the phases 
n are independent and uniform in �0,1�,
and where nmin=−� and nmax=+�. The function U�x� is frac-
tal with Hurst exponent H on all scales: the frequencies �n
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are in geometric progression, in contrast with a Fourier trans-
form that would correspond to an arithmetic progression. In
the limit �→1, the discrete spectrum become dense and the
function U�x� converge toward the fractional Brownian mo-
tion of exponent H. We refer to �9� for more details on its
mathematical properties and now discuss how to use it for
numerical simulations.

If one wishes to generate the potential U�x� at N discrete
points x=1,2 , . . . ,N, one has to choose the three parameters
�nmin,nmax,�� in the following way.

�i� The maximal Fourier frequency �max associated to the
lattice spacing x=1 is �max=1 / �x�=1. A convenient
choice is thus nmax=0, corresponding to the maximal fre-
quency �nmax=1 in the sum of Eq. �5�.

�ii� The minimal Fourier frequency �min associated to the
sample size N is �min=1 /N. Since we do not wish any peri-
odicity of order N in the potential, we have to choose nmin

such that the minimal frequency �nmin in the sum of Eq. �5�
satisfies �nmin�1 /N.

�iii� Finally, the parameter � determines the discretization
of the frequency spectrum: the frequency �n has to be suffi-
ciently dense.

We now turn to the generalization to higher dimension.

B. Generalization to dimension d=2

To generalize Eq. �5� to higher dimension d�1, the idea
�10,11� is to keep the principle of a sum over plane waves of
various vectors k�, where the modulus �k�� varies in geometric
progression �n, and where the angular part of k� is uniformly
distributed to ensure isotropy. In dimension d=2, this corre-
sponds to �10,11�

U�x,y� = �
n=nmin

nmax 1
�mmax

�
m=1

mmax cos�2	
n,m� − cos�2	�n�x cos 2	�n,m + y sin 2	�n,m� + 2	
n,m�
�nH , �6�

where the phases �n,m and 
n,m are independent and uni-
formly distributed in �0,1�. The new parameter mmax fixes the
number of wave vectors k� of a given modulus �k��. We have
checked that this generalization proposed in �10,11� gives
satisfactory numerical realizations of self-affine random po-
tential �whereas the alternative generalization proposed in
�12,13� that are based on Cartesian coordinates presents
anisotropy�.

Here, we wish to generate the potential U�x ,y� at
N2 discrete points where x=1,2 , . . . ,N and y=1,2 , . . . ,N.
One has then to choose the four parameters

�nmin,nmax,mmax,�� to obtain good results for the two-point
function of Eq. �3� for all pairs of points of the samples. For
squares samples of linear size 10�L�80, we have found
that the following set of parameters give satisfactory realiza-
tions of the potential U�x ,y� for Hurst exponents 0.3�H
�0.8: nmax=0, nmin=−150, mmax=100, and �=1.2. We show
on Fig. 1�a� an example of realization of the random self-
affine random potential U�x ,y� on a square of size of 100
�100, for the value H=0.5 of the Hurst exponent. The cor-
responding correlation function is shown on Fig. 1�b� on a
log-log plot.
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FIG. 1. Random self-affine random potential U�x ,y� on a square of size 100�100, obtained via the method of Eq. �6� for the value
H=0.5 of the Hurst exponent: �a� example of one realization of the random potential U�x ,y�. �b� Log-log plot of the correlation function
C�r���U�r�1�−U�r�2��2 as a function of the distance r��r�1−r�2� after averaging over angles and over disorder realizations: the slope is here
2H=1, as it should for H=0.5 �see Eq. �3��.
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III. STRONG DISORDER RENORMALIZATION
PROCEDURE

Strong-disorder renormalization �see �14� for a review� is
a very specific type of renormalization group �RG� that has
been first developed in the field of quantum spins: the RG
rules of Ma et al. �15� have been put on a firm ground by
Fisher who introduced the crucial idea of “infinite disorder”
fixed point where the method becomes asymptotically exact,
and who computed explicitly exact critical exponents and
scaling functions for one-dimensional disordered quantum
spin chains �16�. This method has thus generated a lot of
activity for various disordered quantum models �14� and has
been then successfully applied to various classical disordered
dynamical models, such as random walks in random media
�17,18�, reaction-diffusion in a random medium �19�, coars-
ening dynamics of classical spin chains �20�, trap models
�21�, random vibrational networks �22�, absorbing state
phase transitions �23�, zero range processes �24�, and exclu-
sion processes �25�.

For random walks in random media, the procedure intro-
duced in Refs. �17,18� or in the recent work �26� are specific
to the dimension d=1. Here in dimension d=2, the appropri-
ate framework is the “strong disorder renormalization” �RG�
procedure introduced �5� that can be defined for any master
equation. In this section, we recall its principles for the
present problem of a particle in a two-dimensional potential.

A. Master equation

The master equation describing the evolution of the prob-
ability Pt�r�� to be at position r� at time t can be written as

dPt�r��
dt

= �
r��

Pt�r���W�r�� → r�� − Pt�r��Wout�r�� , �7�

where W�r��→r�� represents the transition rate per unit time
from position r�� to r�, and

Wout�r�� � �
r��

W�r� → r��� �8�

represents the total exit rate out of position r�.
For the two-dimensional random walk in the random po-

tential U�r�� at temperature T, we have chosen to consider the
Metropolis dynamics defined by the transition rates

W�r� → r��� = ��r�,r��	 min1,e−�U�r���−U�r���/T� . �9�

The first factor ��r�,r��	 means that the two positions are neigh-
bors on the two-dimensional lattice, and the last factor en-
sures the convergence toward thermal equilibrium at tem-
perature T via the detailed balance property

e−U�r��/TW�r� → r��� = e−U�r���/TW�r�� → r�� . �10�

B. Strong disorder renormalization rules

For dynamical models, the aim of any renormalization
procedure is to integrate over “fast” processes to obtain ef-
fective properties of “slow” processes. The general idea of
“strong renormalization” for dynamical models consists in

eliminating iteratively the “fastest” process. The RG proce-
dure introduced in �5� can be summarized as follows.

�1� Find the position r�� with the largest exit rate Wout
�

Wout
� = Wout�r��� � maxr��Wout�r��� . �11�

�2� Find the neighbors �r�1 ,r�2 , . . . ,r�n� of position r��, i.e.,
the surviving positions that are related via positive rates
W�r��→r�i��0 and W�r�i→r����0 to the decimated position
r��. For each neighbor position r�i with i� �1, . . ,n�, update
the transition rate to go to the position r� j with j� �1, . . ,n�
and j� i according to

Wnew�r�i → r� j� = W�r�i → r� j� + W�r�i → r��� � 	r���r� j� ,

�12�

where the first term represents the ‘old’ transition rate �pos-
sibly zero�, and the second term represents the transition via
the decimated position r��: the factor W�r�i→r��� takes into
account the transition rate to r�� and the term

	r���r� j� =
W�r�� → r� j�

Wout�r���
�13�

represents the probability to make a transition toward r� j
when in r��. The 2n rates W�r��→r�i� and W�r�i→r��� then dis-
appear with the decimated position r��. Note that the rule of
Eq. �12� has been recently proposed in �27� to eliminate fast
states from various dynamical problems with two very sepa-
rated time scales. The physical interpretation of this rule is as
follows: the time spent in the decimated position r�� is ne-
glected with respects to the other time scales remaining in
the system. The validity of this approximation within the
present renormalization procedure is discussed in detail in
�5�.

�3� Update the exit rates out of the neighbors r�i of r��, with
i=1, . . . ,n either with the definition

Wout
new�r�i� = �

r�
Wnew�r�i → r�� �14�

or with the rule that can be deduced from Eq. �12�

Wout
new�r�i� = Wout�r�i� − W�r�i → r���

W�r�� → r�i�
Wout

� . �15�

The physical meaning of this rule is the following. The exit
rate out of the position r�i decays because the previous tran-
sition toward r�� can lead to an immediate return toward r�i.
After the decimation of the position r��, this process is not
considered as an “exit” process anymore, but as a residence
process in the position r�i. This point is very important to
understand the meaning of the renormalization procedure:
the remaining positions at a given renormalization scale are
“formally” microscopic positions of the initial master equa-
tion �Eq. �7��, but each of these remaining microscopic po-
sition actually represents some “valley” in position space
that takes into account all the previously decimated posi-
tions.

�4� Return to point �1�.
We refer to �5� for more detailed explanations. In practice,

the renormalized rates W�r�→r��� can rapidly become very
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small as a consequence of the multiplicative structure of the
renormalization rule of Eq. �12�. This means that the appro-
priate variables are the logarithms of the transition rates that
we will call “barriers” in the remaining of this paper. The
barrier B�r�→r��� from r� to r�� is defined by

B�r� → r��� � − ln W�r� → r��� �16�

and similarly the exit barrier out of position r� is defined by

Bout�r�� � − ln Wout�r�� . �17�

A very important advantage of this formulation in terms of
the renormalized transition rates of the master equation is
that the renormalized barriers take into account the true bar-
riers of the dynamics, whatever their origin which can be
either energetic or entropic.

C. Numerical details

We have applied numerically these renormalization rules
for square samples of size L2 with 10�L�80 with a statis-
tics of 33.105�ns�L��280 disordered samples. We have
studied six values of the Hurst exponent in the interval
0.3�H�0.8.

IV. STATISTICS OF THE EQUILIBRIUM TIME
OF FINITE SYSTEMS

In a finite system, the master equation of Eq. �7� satisfy-
ing the detailed balance condition of Eq. �10� will converge
exponentially toward the equilibrium Boltzmann distribu-
tion. The characteristic time of this exponential convergence
is called the equilibrium time teq,

Pt�r�� − Peq�r�� �
t→�

e−t/teq. �18�

Within the strong disorder renormalization procedure de-
scribed in the previous section, this equilibrium time teq of a
given disordered sample is determined by the renormalized
exit barrier

�eq = ln teq, �19�

corresponding to the last decimation process where the two
largest metastable valleys merge into a surviving valley cor-
responding to thermal equilibrium of the whole sample. We
find that the disorder-averaged value �eq�L� and the width
�L� involve the same barrier exponent �

�eq�L� �
L→�

L�,

�L� �
L→�

L�, �20�

as shown on Fig. 2�a� for the value H=0.8 of the Hurst
exponent. Moreover, this exponent � is equal, as expected
�3,4�, to the Hurst exponent H of the random potential

� = H . �21�

We show on Fig. 2�b� the log-log plot of the width �L� for
various values H=0.3, 0.4, 0.5, 0.6, 0.7, and 0.8 of the Hurst
exponent. Our conclusion is thus that the strong disorder
renormalization procedure confirms the activated nature of
the dynamics and the logarithmic slow diffusion of Eq. �4� in
dimension d=2.

We show on Fig. 3�a� the probability distribution QL��eq
= ln teq� over the disordered samples of size L2 for various
sizes L, for the case H=0.8. The convergence toward a fixed
rescaled distribution

QL��eq� �
1

�L�
Q̃�u �

�eq − �eq�L�
�L�

� �22�

is shown on Fig. 3�b� in log-scale to see the tails.

V. CONCLUSION

In this paper, we have shown that the strong disorder
renormalization rules for master equations introduced in
�5� are appropriate to study random walks in two-
dimensional self-affine random potentials of Hurst exponent
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FIG. 2. �Color online� Statistics of the equilibrium time teq over the disordered samples of sizes L2: the appropriate variable is �eq

=ln teq �Eq. �19�� �a� the disorder-averaged value �eq�L� and the width �L� shown here for H=0.8 scale with the same exponent � �see Eq.
�20��. �b� the exponent � of the width �L� coincides with the Hurst exponent H, as shown here for H=0.3, 0.4, 0.5, 0.6, 0.7, and 0.8.
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H�0: we have found an “infinite disorder fixed point,”
where the equilibrium time teq to reach equilibrium for
samples of size L�L scales as ln teq=LHu, where u is a
random variable of order O�1�. This activated scaling found
for the dynamics indicates that the strong disorder renormal-
ization procedure becomes asymptotically exact in the limit
of large times and large sizes �14�. Our results confirm that

the logarithmic slow diffusion of Eq. �4� exists not only in
dimension d=1 where exact results can be obtained for the
Sinai model case H=1 /2, but also in higher dimension, as
shown here for d=2. These conclusions have been recently
checked via independent methods based on the exact calcu-
lation of the biggest relaxation time �28� or of some first-
passage time �29�.
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FIG. 3. �Color online� Statistics of the equilibrium time teq over the disordered samples of sizes L2 for the case H=0.8: �a� probability
distribution QL��eq=ln teq� for L=10, 20, 30, 40, and 50 and �b� the same data after the rescaling of Eq. �22� and in log scale to see the tails.
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